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1. Bestimme den nächsten Schnittpunkt eines Strahl o+ td mit einer Kugel, die Radius rKugel

und Position c hat.
Lösung: Eine Kugel ist über |r − c| = rKugel definiert, der Strahl über r = o + td. Die
Gleichung kann quadriert und mit den Eigenschaften des Skalarproduktes vereinfacht werden:

(td+ (o− c)) · (td+ (o− c)) = r2Kugel

=⇒ t2|d|2 + 2td · (o− c) + |o− c|2 − r2Kugel = 0

=⇒ t = d · (c− o)±
√

(d · (c− o))2 − |c− o|2 + r2Kugel︸ ︷︷ ︸
k

,

wobei |d| = 1 benutzt wurde. Es gibt einige Fälle. Wenn die Gerade die Kugel verfehlt, ist
k < 0, d.h. es gibt keine Lösungen für t. Bei k = 0 gibt es genau eine Lösung, d.h. die
Gerade liegt tangential an der Kugel. Für k > 0 gibt es zwei Lösungen, eine Eintritts- und
eine Austrittstelle. Für den nächsten Schnittpunkt mit dem Strahl muss die kleinste positive
Lösung gewählt werden. Das ist z.B. für den Fall, dass o innerhalb der Kugel liegt, wichtig.

2. Wird eine Lampe von einem Tisch entfernt, wird der Tisch dunkler (mit r2). (Wie) Kann
dieser Effekt mit unserer Theorie erklärt werden?
Lösung: Um die radiance des Tisches in eine Richtung (z.B. Richtung Kamera) zu bestim-
men, werden nach der rendering equation alle Richtungen berücksichtigt. Je weiter die Lampe
vom Tisch entfernt ist, desto weniger Richtungen zeigen auf die Lampe (d.h. der Raumwin-
kel, der von der Lampe überdeckt wird, ist kleiner). Praktisch zeigt sich das dadurch, dass
weniger zufällig gewählte Richtungen die Lampe treffen. Dadurch wird der Tisch dunkler.
Dadurch, dass der Raumwinkel mit Ω = A

r2 abfällt, ergibt sich der r2 Zusammenhang.

3. Betrachte eine Oberfläche mit Normalen n, an der ein Strahl mit Richtung d reflektiert wird.
Was ist die neue Richtung des Strahls d′?

dd′

n

d∥

d⊥

Lösung: d kann in zwei senkrechte Komponenten d∥ und d⊥ zerlegt werden. Dann lässt
sich von der Grafik d′ = d⊥ − d∥ ablesen. Mit dem Skalarprodukt und |n| = |d| = 1 folgt
d∥ = (n · d)n. Mit d = d∥ + d⊥ folgt dann d′ = d− 2d∥ = d− 2(n · d)n.

4. Zeige, dass Schwarzkörper Lambertsche Strahler sind (d.h. die radiance in allen Richtungen
gleich ist). Betrachte den Schwarzkörper als eine geschlossene Box mit einem kleinen Loch. In
der Box befindet sich ein Photonengas, d.h. ihr könnt die Photonen als sich zufällig bewegende
Teilchen betrachten. Die Teilchen und deren Wellenlängen sind isotrop verteilt.

v⊥ dt

c
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Lösung: Betrachte einen kleinen Zeitschritt dt. In der Zeit verlassen alle Photonen aus
einem Bereich mit Höhe v⊥ dt den Schwarzkörper. Da das Photonengas homogen und isotrop
ist, ist der Energiefluss direkt proportional zum Volumen dieses Bereiches. Das Volumen
ist nach dem Prinzip von Cavalieri (Verallgemeinerung der Fläche eines Parallelogramms)
proportional zur Höhe v⊥ dt. v⊥ hängt dabei von der Bewegungsrichtung der Photonen ab,
mit v⊥ = c · cos θ, wobei θ der Winkel zur Normalen ist. Damit ist direkt d2Φ

dω dA ∝ cos θ, und
daraus folgt L = d2Φ

dω dA cos θ = const.

Alternativ kann die projizierte Fläche A⊥ auch explizit verwendet werden.

5. „Russian roulette“ bezeichnet eine Methode um Strahlengänge mit einem geringen Beitrag
teilweise früher abzubrechen. Dabei wird ein Strahlengang mit einer Wahrscheinlichkeit von
p vorzzeitig abgebrochen (d.h. als „Ergebnis“ wird 0 gesetzt). Wenn der Strahlengang nicht
abgebrochen wird, muss der Wert aber korrigiert werden. Bestimme den nötigen Wert, damit
der Erwartungswert nicht verändert wird.

Lösung: Wir betrachten das Problem ganz allgemein, sei X eine beliebige Zufallsgröße mit
Erwartungswert E[X]. Das russian roulette gibt uns eine zweite Zufallsgröße Y . Damit das
Verfahren funktioniert, muss E[X] = E[Y ]. Mit Wahrscheinlichkeit p ist y = 0, mit Wahr-
scheinlichkeit 1 − p ist y = αx. Dabei soll α ein konstanter Faktor sein, den wir so wählen
möchten, dass das Verfahren funktioniert. Also ist E[Y ] = p·0+(1−p)·αE[X] = (1−p)αE[X].
Also muss α = 1

1−p sein.

6. Wie könnte man aus zwei oder drei gleichverteilten Zufallsvariablen X,Y, Z über [0, 1] eine
gleichverteilte Richtung auf einer Halbkugel bestimmen? Überlegt euch, warum euer Verfah-
ren wirklich gleichverteilte Richtungen erzeugt.

Lösung: Eine Möglichkeit: Die Zufallsvariablen werden erst auf den Bereich [−1, 1] erweitert
(X ′ = 2X − 1 etc.). Der Zufallspunkt (X ′, Y ′, Z ′) ist dann im Quadrat mit Seitenlänge 2
gleichverteilt. Liegt der Punkt in einer Kugel mit Radius 1, kann der Punkt einfach normiert
werden, was genau einer Projektion auf die Kugeloberfläche entspricht. Für Punkte außerhalb
der Kugel kann man das aber nicht machen, da dort nur Punkte in einigen Richtungen liegen
(den Ecken des Quadrats) und damit nicht in alle Richtungen gleichverteilt sind. In dem
Fall wird ein neuer zufällige Punkt betrachtet, solange bis einer in der Kugel liegt. Solche
Verfahren werden rejection sampling genannt.

Um von einer gleichverteilten Richtung auf einer Kugel zu einer Halbkugel zu kommen,
können z.B. alle generierten Richtungen, die in der anderen Halbkugel liegen, umgedreht
werden.

7. Wenn man sich von einem Licht entfernt, erscheint das Bild auf dem Auge gleich hell. Warum
können wir dann ohne Gefahr auf Sterne, aber nicht die Sonne schauen?

Lösung: Sterne sind viele Lichtjahre von uns entfernt, d.h. mindestens 105 mal weiter weg als
die Sonne und damit ist deren Bild auf unserer Netzhaut auch 105 mal kleiner. Die irradiance
dΦ
dA des Bildes hängt dabei nicht vom Abstand ab, das Bild wird nur kleiner. Die eingefange
Gesamtleistung eines Sterns ist gering, aber auf eine sehr kleine Fläche konzentriert. Das Bild
der Sonne auf der Netzhhaut kann nur einige Millimeter groß sein und damit ist das Bild eines
Sterns kleiner als 10 nm. Für diese Größen müssen viele weitere Effekte berücksichtigt werden,
und es ist z.B. wichtig, wie scharf genau das Bild auf der Netzhhaut ist, welche Unschärfe
durch die Atmosphäre entsteht oder wie die Energie im Auge abgeführt wird. Diese Effekte
haben bei einem Blick in die Sonne nur einen geringfügigen Einfluss, sind beim Stern aber
wesentlich. Die Erfahrung zeigt uns, dass die zusätzlichen Effekte tatsächlich dafür sorgen,
dass es sicher ist, mit bloßem Auge zu den Sternen zu schauen.

8. Wie kann eine Linse genutzt werden, um eine Kamera zu bauen? Was sind Unterschiede zur
pinhole camera?

Lösung: Eine Linse bildet Lichtquellen bzw. Gegenstände im Abstand g auf ein Bild mit
Abstand b zur Linse entlang der optischen Achse ab. Der Zusammenhang wird durch die
Linsengleichung 1

f = 1
g +

1
b bestimmt. Wird eine Sammellinse (f > 0) vor einen Bildsensor im

2



Abstand b gestellt, können also Gegenstände im Abstand g scharf abgebildet werden. Andere
Gegenstände werden nur unscharf dargestellt. Bei der (idealen) pinhole camera sind dagegen
alle Gegenstände scharf abgebildet. In der Realität kann man das Loch aber nicht beliebig
klein machen, sodass tatsächlich alle Gegenstandsweiten unscharf sind. Da die Bildsensoren
eine endliche Sensitivität haben, ist es nötig möglichst viel Licht „einzusammeln“, um auch
dunkle Szenen abbilden zu können. Eine Linse kann im Grunde beliebig groß angefertigt
werden, währen ein größeres Loch in der pinhole camera zu einem unschärferen Bild führen
würde, wenn der Abstand zum Bildsensor gleichbleibt.

Sensor A

g b

f f

Sensor B

Der Gegenstand wird auf Sensor A also scharf abgebildet, nicht aber auf Sensor B.

10. Zeige, dass die radiance entlang eines Strahls konstant bleibt. Betrachte dazu zwei kleine
Oberflächen dA,dA′ mit beliebiger Position und Orientierung. Bestimme für beide Oberflä-
chen die radiance. Dazu muss der Raumwinkel der Flächen aus Sicht der jeweils anderen
bestimmt werden.

Lösung: Wir betrachten genau die Strahlen, die durch beide Flächen gehen und bezeichnen
deren radiant flux mit d2Φ.1 Nur weil wir uns genau diese Strahlen anschauen ist Φ bei beiden
Flächen gleich, allgemein gilt das nicht. Um die radiance L = d2Φ

dω dA⊥ zu bestimmen, ist es
nötig die Parameter dω und dA⊥ zu bestimmen. dω ist also genau der Raumwinkel von dA′

aus der Sicht von dA. Nach der Definition des Raumwinkels folgt dω = dA′⊥

r2 , wobei r der
Abstand zwischen den Flächenstücken ist. Analog dω′ = dA⊥

r2 . Daraus erhalten wir direkt

L =
d2Φ

dω dA⊥ =
d2Φ

dA′⊥

r2 dA⊥
=

d2Φ

dA′⊥ dA⊥

r2

=
d2Φ

dA′⊥ dω
= L′.

1Das d2 verdeutlicht hier, dass die Größe von zwei anderen kleinen Größen abhängt (dA und dA′). Verdoppeln
wir die eine, wird sich auch d2Φ verdoppeln. Das bedeutet auch, dass man durch zwei andere kleine Größen teilen
muss, um wieder eine „normale“ Größe zu erhalten.
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