
Wir schreiben einen Raytracer

Armas Scharpegge

DPG Schülertagung 2025

Universität Bielefeld



3D Rendering

3D Szene
Rendering−−−−−→ 2D Bild

• Position von Kugeln, Dreiecken

• Materialeigenschaften

• Kameraposition und -eigenschaften
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Theorie



Licht

bekannt als

• Photonen

• Elektromagnetische Strahlen

• ...

Genauigkeit vs. Rechenaufwand
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Geometrische Optik
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Wie entsteht ein Bild?

Bayer-Muster

https://en.wikipedia.org/wiki/Bayer_filter 4

https://en.wikipedia.org/wiki/Bayer_filter


Kamera

· · ·

SensorLichtquelle

⇒ Pinhole camera
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Farben - CIE 1931
https://en.wikipedia.org/wiki/CIE_1931



Wahrnehmung
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Abbildung 1: Sensitivität der menschlichen Zapfen.

Abb. 1: Vanessaezekowitz at en.wikipedia, CC BY 3.0, via Wikimedia Commons 6

https://commons.wikimedia.org/wiki/File:Cones_SMJ2_E.svg
https://creativecommons.org/licenses/by/3.0


Color matching

Abbildung 2: RGB-Werte, deren Farbe monochromatischem Licht entspricht.

Abb. 2: PAR, CC0, via Wikimedia Commons 7

https://commons.wikimedia.org/wiki/File:CIE1931_RGBCMF2.png


Strahlungsgrößen

dA

n

Jedes Photon hat eine Energie =⇒ Einfach aufaddieren.
Strahlen aus vielen Photonen: Betrachte Leistung Φ = dQ

dt .
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Integration

Bekannt: radiant flux Φ = dE
dt .

Gesucht: Energie E

Addiere Φ über alle Zeiten auf:

E =

∫
Φ dt =

∫
dE
dt

dt =
∫

dE
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Integration am Graphen

t

Φ

∫
Φ dt = Fläche unter Graphen
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Irradiance

E =
dΦ
dA

dA

n
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Raumwinkel vs. Winkel

r A

Abbildung 3: Raumwinkel.

Abb. 3: Solid_Angle.png: Haade / *derivative work:
Habib.mhenni, CC BY-SA 3.0, via Wikimedia Commons

θ
r

s

Abbildung 4: Winkel.

Raumwinkel Winkel
Kugelausschnitt Kreisabschnitt
Ω = A

r2
θ = s

r

Voller Raumwinkel: 4π Voller Winkel: 2π
Steradians sr Radians rad 12

https://commons.wikimedia.org/wiki/File:Angle_solide_coordonnees.svg
https://commons.wikimedia.org/wiki/File:Angle_solide_coordonnees.svg
http://creativecommons.org/licenses/by-sa/3.0/


Radiance

L =
d2Φ

dω dA⊥ dA⊥ = dA cos θ

dA

dω
dA⊥

θ

n
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Radiance

Zeige:

Radiance bleibt entlang eines Strahls gleich.
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Radiance

Zeige: Radiance bleibt entlang eines Strahls gleich.
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Übersicht

radiant flux Φ =
dQ
dt

irradiance E =
dΦ
dA

radiance L =
d2Φ

dω dA⊥ =
d2Φ

dω dA cos θ
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Streuung

dω

Li

Lo aus allen Richtungen
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Streuung

dω

Lo

Li aus allen Richtungen

Material bestimmt, welche Richtungen wie stark in welche anderen Richtungen gestreut
werden.
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Rendering equation

Lo(p,ωo) = Le(p,ωo)︸ ︷︷ ︸
Emittiertes Licht

+

∫
S2

f (p,ωo ,ωi )

irradiance︷ ︸︸ ︷
Li (p,ωi )| cos θi | dωi︸ ︷︷ ︸

Reflektiertes Licht

S2 ist die Oberfläche der Einheitskugel =⇒ Alle Richtungen
Ohne Transmission nur die obere Halbkugel relevant.
f heißt BSDF (bidirectional scattering distribution function).
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Praxis



Idee

1
b − a

∫ b

a
f (x) dx︸ ︷︷ ︸

Mittelwert als Integral

=
f (x1) + f (x2) + · · ·+ f (xN)

N︸ ︷︷ ︸
Mittelwert aus Zufallszahlen
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Genauer

• Erwartungswert bei diskreten Zufallszahlen (z.B. Würfel)

E [X ] =
∑

Pi f (xi ) = P1f (x1) + P2f (x2) + · · ·+ Pnf (xn)

• Bei kontinuierlichen (z.B. Position vom Würfel):

E [X ] =

∫
f (x)p(x) dx

20



Wahrscheinlichkeitsdichte (PDF)

p(x) =
dP
dx

=⇒ P(x0 ≤ x ≤ x0 + dx) = p(x0) dx

P(a ≤ x ≤ b) =

∫ b

a
p(x) dx

z.B. uniform (Gleichverteilung) zwischen a und b: p(x) = 1
b−a zwischen a und b, 0

außerhalb ∫ ∞

−∞
p(x) dx =

21
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Wahrscheinlichkeitsdichte (PDF)
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dP
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Monte Carlo Integration

Erwartungswert experimentell bestimmen um das Integral zu bestimmen. Wähle x mit
PDF p(x), dann

∑N
i=1 g(xi )

N
→

∫
g(x)p(x) dx

Mit g(x) = f (x)
p(x)

∑N
i=1 g(xi )

N
→

∫
g(x)p(x) dx =

∫
f (x) dx

22
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Welches p(x)?

Dort wo f (x) groß ist, sollte häufiger gesampled werden. Am besten p(x) ∝ f (x)

-
Dann müsste man aber

∫
f (x) dx schon kennen.

Ziel: f (x)
p(x) soll möglichst wenig variieren.
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Warum Monte Carlo?

• Diskretisieren des Integrals hat Fehler O
(
N−d

)
in Dimension d .

• „Fluch der Dimensionen“

• Monte Carlo immer O
(
N− 1

2

)
.

• Rauschen sieht besser als Artefakte aus.
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Raytracing Algorithmus

Bestimme einen Strahl für jeden Pixel, für den die radiance berechnet wird.
Radiance berechnet sich immer so:

1. Finde den ersten Schnittpunkt mit der Szene (inkl. Informationen über die
Oberfläche)

2. Bestimme die emittierte radiance und

L · f (p,ωo ,ωi )| cos θ|
p(x)

für eine zufällige Richtung.

Abbruchbedingung: z.B. eine maximale Tiefe vorgeben (alternativ russian roulette)
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Lambertsche Oberfläche

Komplette, „gleichmäßige“ Streuung des Lichts (keine Transmission).

f (p,ωo ,ωi ) =
R

π
0 ≤ R ≤ 1

Warum π? Weil
∫
cos θ dω = π (berechnet den Querschnitt einer Halbkugel, was ein

Kreis mit bekannter Fläche π)
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Lambertscher Strahler

„Gleichmäßiges“ Licht in alle Richtungen.

z.B. Schwarzkörper (Strahlung von warmen Objekten)
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Richtungen samplen

Richtungen auf der Halbkugel:

• uniform: p(x) = 1
2π

• da Raumwinkel einer Halbkugel 2π

• cosine-weighted p(x) = cos θ
π

28



Strahl

d

o

r(t) = o + td t ≥ 0, |d | = 1

29



Schnittpunkt mit einer Kugel

Alle Punkte im Abstand rKugel.

|r − c | = rKugel

(r − c)2 = (r x − cx)
2 + (r y − cy )

2 + (r z − cz)
2 = r2

Kugel

30



Ausblick

• „Physically Based Rendering: From Theory To Implementation“ von Matt Pharr,
Wenzel Jakob, und Greg Humphreys

• https://pbr-book.org/

• „Ray Tracing in One Weekend“ von Peter Shirley, Trevor D Black und Steve
Hollasch

• https://raytracing.github.io/

• „Monte Carlo Crash Course“ von Max Slater
• https://thenumb.at/Probability/

Und: Wie kann man wieder einzelne Strahlen durch die Integrale darstellen?
=⇒ Distributionentheorie

31
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Selber machen

https://ascharpegge.de/dpg25
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https://ascharpegge.de/dpg25


Φ =
dQ
dt

L =
Φ

dω dA cos θ
r = o + td Ω =

A

r2

∫
f (x) dx ≈ 1

N

N∑
i=1

f (x)

p(x)

Lambertsche BSDF f (p,ωo ,ωi ) =
R

π
uniforme Halbkugel p(x) =

1
2π

Lo(p,ωo) = Le(p,ωo)︸ ︷︷ ︸
Emittiertes Licht

+

∫
S2

f (p,ωo ,ωi )

irradiance︷ ︸︸ ︷
Li (p,ωi )| cos θi | dωi︸ ︷︷ ︸

Reflektiertes Licht

https://ascharpegge.de/dpg25
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